Discussion 10B

Joint Distributions

A joint distribution is the distribution of a tuple of random variables.
Pr[(X1,,Xn)=(x1,,xn)]=Pr[X1=x1,,Xn=xn]\Pr[(X_1, \cdots, X_n) = (x_1, \cdots, x_n)] = \Pr[X_1=x_1, \cdots, X_n=x_n]

Example


X=0X=0
X=1X=1
Y=0Y=0
Pr[X=0,Y=0]=13\Pr[X=0, Y=0] = \frac{1}{3}
Pr[X=1,Y=0]=16\Pr[X=1, Y=0] = \frac{1}{6}
Y=1Y=1
Pr[X=0,Y=1]=0\Pr[X=0, Y=1] = 0
Pr[X=1,Y=1]=12\Pr[X=1, Y=1] = \frac{1}{2}
Given the joint distribution Pr[X=x,Y=y]\Pr[X=x, Y=y], the marginal distribution of XX is Pr[X=x]\Pr[X=x].
Pr[X=x]=yPr[X=x,Y=y]=yPr[Y=y]Pr[X=xY=y]\Pr[X=x] = \sum_{y} \Pr[X=x, Y=y] = \sum_{y} \Pr[Y=y] \Pr[X=x \mid Y=y]
This is just the law of total probability.

X=0X=0
X=1X=1

Y=0Y=0
Pr[X=0,Y=0]=13\Pr[X=0, Y=0] = \frac{1}{3}
Pr[X=1,Y=0]=16\Pr[X=1, Y=0] = \frac{1}{6}
Pr[Y=0]=12\Pr[Y=0] = \frac{1}{2}
Y=1Y=1
Pr[X=0,Y=1]=0\Pr[X=0, Y=1] = 0
Pr[X=1,Y=1]=12\Pr[X=1, Y=1] = \frac{1}{2}
Pr[Y=1]=12\Pr[Y=1] = \frac{1}{2}

Pr[X=0]=13\Pr[X=0] = \frac{1}{3}
Pr[X=1]=23\Pr[X=1] = \frac{2}{3}
11
Pr[X=x]\Pr[X=x] and Pr[Y=y]\Pr[Y=y] are aptly named marginals because they fit into the margins of this table, where each is the sum of entries in the columns or rows, respectively.

Independence

XX and YY are independent when their joint distribution Pr[X=x,Y=y]=Pr[X=x]Pr[Y=y]\Pr[X=x, Y=y] = \Pr[X=x] \Pr[Y=y]

Reminder

The sum of probabilities xPr[X=x]=1\sum_{x} \Pr[X=x] = 1. This is implicitly saying xPr[X=xΩ]=1\sum_x \Pr[X=x \mid \Omega] = 1.
This holds other conditions: xPr[X=xA]=1\sum_x \Pr[X=x \mid A] = 1.