Discussion 11B

Tail Sum Formula

Discrete

If XX only takes on values in the natural numbers then
E[X]=k=1xPr(X=k)=k=1Pr(Xk)E[X] = \sum_{k=1}^\infty x \Pr(X = k) = \sum_{k=1}^\infty \Pr(X \geq k)

Continuous

If XX only takes on nonnegative values then
E[X]=0xfX(x)dx=0Pr(Xx)dx=0(1FX(x))dxE[X] = \int_0^\infty x f_X(x) dx = \int_0^\infty \Pr(X \geq x) dx = \int_0^\infty (1 - F_X(x)) dx

Joint Continuous Distributions

fX,Y(x,y)f_{X,Y}(x,y) is the PDF of the joint distribution of XX and YY where Pr(X[a,b],Y[c,d])=cdabfX,Y(x,y)dxdy\Pr(X \in [a, b], Y\in [c, d]) = \int_c^d \int_a^b f_{X,Y}(x,y) dx dy.
fX,Y(x,y)0f_{X,Y}(x,y) \geq 0
00fX,Y(x,y)dxdy=1\int_0^\infty \int_0^\infty f_{X,Y}(x,y) dx dy = 1

XX and YY are independent when fX,Y(x,y)=fX(x)fY(y)f_{X,Y}(x,y) = f_X(x) f_Y(y).

Finding Distributions

To find the distribution of a continuous random variable XX, find the CDF F(x)=Pr(X<x)F(x) = \Pr(X < x), then differentiate to get the PDF f(x)f(x).

Normal Distribution

XN(μ,σ)X \sim \mathcal{N}(\mu, \sigma)
f(x)=12πσ2exp(xμ)22σ2f(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp{\frac{-(x-\mu)^2}{2 \sigma^2}}
XX has mean μ\mu and variance σ2\sigma^2.

ZN(0,1)Z \sim \mathcal{N}(0,1) has the standard normal distribution.
If X=aZ+bX = a Z + b then XN(b,a)X \sim \mathcal{N} (b, a).
If XN(μX,σX)X\sim \mathcal{N}(\mu_X, \sigma_X) and YN(μY,σY)Y \sim \mathcal{N} (\mu_Y, \sigma_Y) are independent then X+YN(μX+μY,σX2+σY2)X + Y \sim \mathcal{N} (\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2}).