- FCND - 04 - Estimation - 02 - Intro to Sensors
- 3. Introduction to Sensors
- 7. Gyro Measurement Model
- 10. Full 3D attitude update
- Euler Forward Method
- 13. Two Things Accelerometers Measure
- 1. Attitude (without yaw)
- Solving for World-Frame Attitude with Body-Frame Acceleration Measurements
- 2. Solving for position and velocity from linear acceleration
- 14. 3D Inertial Navigation
- 15. Reading an IMU Spec Sheet
- Bias
- Temperature Dependent Bias
- Random Noise
- 16. Three sources of sensor error
- Scaling and Cross Coupling Matrix
- 17. Calibration
- Offline Calibration
- Online Calibration
- 18. IMU Calibration
- 19. Magnetometer Intuition
- Yaw angle
- 19. Magnetometer Errors and Calibration
- 21. Magnetometer Calibration
- 22. GPS Overview
- 23. GPS Math
- Pseudorange Model
- Delta Tau
- True Range Formula
- 24. GPS Errors, Initialization, Calibration
- GPS Errors
- Multipath errors
- GPS Summary
- How it works
- Sources of Errror
- 25. Barometer
- MEMS Barometer
- Barometer math
- 26. Barometer Errors and Calibration
- Barometer Errors
- Barometer Lag
- Modeling errors
- Barometer Summary
- 27. Barometer Integration
- 28. Summary
Visible to members of this folder
3. Introduction to Sensors
7. Gyro Measurement Model
10. Full 3D attitude update
Euler Forward Method
13. Two Things Accelerometers Measure
1. Attitude (without yaw)
Solving for World-Frame Attitude with Body-Frame Acceleration Measurements
2. Solving for position and velocity from linear acceleration
14. 3D Inertial Navigation
15. Reading an IMU Spec Sheet
16. Three sources of sensor error
17. Calibration
Offline Calibration
Online Calibration
18. IMU Calibration
estimated_scaling_cross_coupling_matrix_and_bias=np.zeros((3,4))
# TODO: Add a row of 1's to the actual acceleration matrix.
acceleration_vectors=np.vstack([actual_a, np.ones(actual_a.shape[1])])
# TODO: Perform least squares for each acceleration components.
for i in range(3):
estimated_scaling_cross_coupling_matrix_and_bias[i,:] = np.linalg.lstsq(acceleration_vectors.T,measured_acceleration_history[i, 1:])[0]
print('(I+M) = \n',estimated_scaling_cross_coupling_matrix_and_bias)
(I+M) =
[[ 9.99994804e-01 1.02061658e-03 9.97475886e-04 -9.81123864e-03]
[ 1.01144764e-03 9.99967074e-01 9.99634809e-04 -9.80928258e-03]
[ 9.95332402e-04 1.01375503e-03 1.00000010e+00 -9.81000264e+00]]
19. Magnetometer Intuition
19. Magnetometer Errors and Calibration
21. Magnetometer Calibration
attitude = np.vstack([orientation, np.ones(orientation.shape[1])])
transformation_matrix = np.zeros((2,3))
for i in range(2):
# TODO: calculate the transformation_matrix containing bias and scailing and cross-correlation elements
transformation_matrix[i,:] = np.linalg.lstsq(attitude.T,field_strength[i,:])[0]
# TODO: Normalize the measured magnetic field.
m = np.matmul(np.linalg.inv(transformation_matrix[:, :2]),
(field_strength - np.reshape(transformation_matrix[:, -1],(2, 1))))
delta_psi_1 = np.arctan2(transformation_matrix[1,0],transformation_matrix[0,0])/np.pi*180
print('First estimation of the relative yaw angle is ',delta_psi_1)
delta_psi_2 = np.arctan2(-transformation_matrix[0,1],transformation_matrix[1,1])/np.pi*180
print('Second estimation of the relative yaw angle is ',delta_psi_2)
estimated_delta_psi = (delta_psi_1+delta_psi_2)/2
print('Average relative yaw angle is= ',estimated_delta_psi)
First estimation of the relative yaw angle is -60.1304321399
Second estimation of the relative yaw angle is -59.5211164999
Average relative yaw angle is= -59.8257743199
sample_number = int(np.random.uniform(0,field_strength.shape[1]))
sample_measurement = field_strength[:,sample_number]
normalized_measurement = np.matmul(np.linalg.inv(transformation_matrix[:, :2]),
(np.reshape(sample_measurement,(2,1)) - np.reshape(transformation_matrix[:, -1],(2, 1))))
# TODO: Calculate the yaw angle relative to the pre-assumed zero direction and add the correction factor
yaw_relative_to_introduced_zero = np.arctan2(-normalized_measurement[1],normalized_measurement[0])/np.pi*180
yaw_relative_to_magnetic_north= yaw_relative_to_introduced_zero + estimated_delta_psi
Yaw relative to the pre-assumed zero = [-31.49847065]
Yaw relative to the magnetic north = [-91.32424497]
22. GPS Overview
23. GPS Math
Pseudorange Model
24. GPS Errors, Initialization, Calibration
GPS Summary
25. Barometer
MEMS Barometer
Barometer math
26. Barometer Errors and Calibration
Barometer Summary
27. Barometer Integration
Q = np.eye(1) # Covariance
H = np.eye(1)
h_hat = 0.5*(gps_data[0] + baro_data[0])
R = np.eye(1)*sigma_baro
h_hat_history = np.array([h_hat[0]])
k_gps = 0 # an element from GPS measurement data
for i in range(baro_t.shape[0]):
if gps_t[k_gps] <= baro_t[i]: # If new GPS measurement has arrived
h_obs = gps_data[k_gps] # Observed h value
R = np.eye(1)*sigma_gps # measuring sigma is gps sigma
k_gps+=1 # advance to the next measurement point
i-=1 # What this does is that it will update altitude based on the GPS and then will come back and update the altitude estimation using the barometer measurement. This will be done without losing the proper count.
else:
h_obs = baro_data[i] # Observed h value using the barometer
R = np.eye(1)*sigma_baro # Measuring sigma is barometer sigma
# TODO: Use recursive estimator from lesson 1 to evalute the altitude
Q = np.linalg.pinv(np.linalg.pinv(Q) + H.T @ np.linalg.pinv(R) @ H)
h_hat = h_hat + Q @ H.T @ np.linalg.pinv(R) @ (h_obs - H @ h_hat)
# creating the historical data of the h_hat in time
h_hat_history = np.vstack((h_hat_history,h_hat))
28. Summary